饲料中添加虎杖对血鹦鹉部分非特异性免疫与脂类代谢指标的影响

范松硕1，崔培1,2，季延滨1，尤宏争3，王旭1，
钱罡1，张春晓1，陈笑1，张梓超1

（1. 天津农学院 水产学院 天津市水产生态与养殖重点实验室，天津 300384；2. 天津市观赏鱼技术工程中心，天津 300042；
3. 天津市水产研究所，天津 300042）

摘要：为了将虎杖作为饲料添加剂应用于水产养殖中，以血鹦鹉（Cichlasoma citrinellum ×C. synspilum）
（体重为48.0 g±3.5 g）为试验对象，以鱼粉、豆粕等为主要蛋白源，鱼油为主要脂肪源，配制脂肪水平分别为8%、14%的基础饲料和高脂饲料，并在高脂饲料中添加不同含量的虎杖（质量分数为0.05%、1.0%、1.5%、2.0%），共分6个处理组进行投喂，每个处理设3个平行，试验周期为28 d，分别于试验开始后第7、14、21、28天取样测定血鹦鹉部分非特异性免疫与脂类代谢指标。结果表明：与对照组相比，随着虎杖添加量的增加，血鹦鹉肝脏超氧化物歧化酶（SOD）、过氧化氢酶（CAT）、溶菌酶（LZM）活力显著提高（P<0.05），丙二醛（MDA）含量呈降低趋势，血清中甘油三酯（ALT） 和谷胱甘肽（AST）活力随虎杖添加量的增加呈降低趋势，试验结束时，在最大添加量2.0%时与对照组有显著性差异（P<0.05）, 血清中甘油三酯（TG）、总胆固醇（CHOL）含量随虎杖添加量的增加呈降低趋势，但与对照组无显著性差异（P>0.05），而血糖（Glu）、高密度脂蛋白（HDL）、低密度脂蛋白（LDL）含量变化不明显（P>0.05）；肝脏中甘油三酯（LPL）、肝酶（HL）活力随虎杖添加量的增加呈下降趋势，但无显著性差异（P>0.05），脂肪酸合成酶（FAS）活力随虎杖添加量的增加而显著降低（P<0.05）。研究表明，饲料中添加虎杖可提高血鹦鹉肝脏抗氧化能力与溶菌酶活力，减轻肝损伤，还可增强血鹦鹉的脂类代谢能力，建议血鹦鹉饲料中虎杖的添加量为2.0%，连续喂食14 d 时效果最佳。

关键词：血鹦鹉；虎杖；抗氧化性能；脂类代谢

中图分类号：S965.81 文献标志码：A

血鹦鹉（Cichlasoma citrinellum ×C. synspilum）是由红魔鬼 Cichlasoma citrinellum 雄鱼和紫红火口 Cichlasoma synspilum 雌鱼交杂所得的 F1 代，又名红财神、财神鱼、发财鱼等，属于淡水热带观赏鱼类，成鱼体长可达 15 ～20 cm，鱼体形态较为臃肿，体副宽厚，呈椭圆形。幼鱼期鱼体呈黑色，成鱼经褪色过程变为粉红或血红色。因其颜色艳丽、饲养相对容易而受到人们的喜爱。在其饲养过程中常投喂高脂饲料，以保持其圆润饱满的体型，这就使鱼机体的综合代谢能力受到一定程度的影响。

脂酶的活性。

目前，有关水产动物养殖中使用虎杖的研究少有报道，而有关虎杖作为饲料添加剂对于血鹦鹉类代谢及免疫指标影响的研究尚未见报道。本试验中，以血鹦鹉为研究对象，通过投喂不同虎杖水平的饲料，测定其肝脏与血清部分免疫及脂类代谢指标等的变化，以期为虎杖作为饲料添加剂在水产养殖中的应用提供理论依据。

1 材料与方法

1.1 材料

试验用血鹦鹉由天津市凯瑞淡水养殖有限公司提供，体质量为（48.0±3.5）g。

1.2 方法

1.2.1 试验设计 试验开始前对试验鱼进行 2 周的暂养驯化，期间使用基础饲料（饲料脂肪水平为 8%，不添加虎杖）进行投喂。驯化结束后，选取大小均匀、体格健壮的个体进行试验。养殖容器为 18 个 200 L 白色塑料水槽，每个水槽中随机放 20 尾鱼。试验共分 6 个处理组，分别标记为基础组、对照组和试验组 A、B、C、D，每个处理组设 3 个平行，较于于 9：00、17：00 表现食性投喂，投喂 30 min 后吸去水槽底部的残饵及粪便。试验用水为曝气 48 h 的自来水，水温为 26 ~ 28 °C，pH 为 8.0 ~ 8.2，溶解氧为 6.0 ~ 7.0 mg/L，氨氮为 1.2 ~ 1.3 mg/L，养殖水槽使用电磁式空气泵 24 h 充气，试验周期为 28 d。1.2.2 试验饲料的制备 试验饲料以进口鱼粉、豆粕为主要蛋白源，参考石英等[8]试验得出的血鹦鹉最适饲料蛋白质水平为 43%，作为设计试验饲料总蛋白质含量，同时设计基础饲料组，粗脂肪为 8%，对照组及试验组用高脂饲料组，粗脂肪为 14%。饲料原料及营养组成如表 1 所示。试验组 A、B、C、D 的饲料分别添加质量分数为 0.5%、1.0%、1.5%、2.0% 的虎杖。各原料粉碎后过 60 号筛，混匀后使用制粒机制成粒径为 1.5 mm 的颗粒料，常温下经 72 h 瞬干后备用。

<table>
<thead>
<tr>
<th>组别</th>
<th>进口鱼粉</th>
<th>豆粕</th>
<th>次粉</th>
<th>麦麸</th>
<th>木质纤维素</th>
<th>矿物质预混料</th>
<th>维生素预混料</th>
<th>蛋氨酸</th>
<th>磷酸二氢钙</th>
<th>氧化胆碱</th>
<th>鱼油</th>
<th>虎杖</th>
</tr>
</thead>
<tbody>
<tr>
<td>基础饲料</td>
<td>41</td>
<td>28</td>
<td>15.5</td>
<td>7.8</td>
<td>3.0</td>
<td>0.5</td>
<td>0.3</td>
<td>0.5</td>
<td>2</td>
<td>1.4</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>对照组</td>
<td>A</td>
<td>41</td>
<td>28</td>
<td>8.2</td>
<td>7.8</td>
<td>2.5</td>
<td>0.5</td>
<td>0.3</td>
<td>0.5</td>
<td>2</td>
<td>8.7</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>41</td>
<td>28</td>
<td>8.2</td>
<td>7.8</td>
<td>2.0</td>
<td>0.5</td>
<td>0.3</td>
<td>0.5</td>
<td>2</td>
<td>8.7</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>41</td>
<td>28</td>
<td>8.2</td>
<td>7.8</td>
<td>1.5</td>
<td>0.5</td>
<td>0.3</td>
<td>0.5</td>
<td>2</td>
<td>8.7</td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>41</td>
<td>28</td>
<td>8.2</td>
<td>7.8</td>
<td>1.0</td>
<td>0.5</td>
<td>0.3</td>
<td>0.5</td>
<td>2</td>
<td>8.7</td>
<td>2.0</td>
</tr>
</tbody>
</table>

1.2.3 样品的采集 试验开始后第 7、14、21 和 28 天分别进行取样，每次随机从各槽中取 5 尾试验鱼，用 MS-222 麻醉后从鱼尾静脉采血，将血液立即放入离心管中，于 4 °C 下以 4000 r/min 离心 10 min，取上清液，置于超低温冰箱（-80 °C）中保存备用。将采血后的试验鱼在冰板上解剖取其肝脏，将肝脏用 4 °C 去离子水冲洗干净，并按质量与体积比为 1：9（g/mL）加入预冷的双蒸水，使用玻璃匀浆器制成 10% 的组织匀浆液，4 °C 条件下以 3500 r/min 离心 10 min，取上清液，置于超低温冰箱（-80 °C）中保存备用。

1.2.4 试验指标的测定 使用 Thermo Scientific Flash 2000 CHN/S/O 有机元素分析仪测定试验饲料中粗蛋白质含量，使用 Gerhardt Sothmex SOX 402 Micro/ SOX 416 Macro 泼氏全自动抽提仪测定粗脂肪含量。

使用东芝 TBA-120FR 全自动生化分析仪测定试验鱼血清样品中的谷丙转氨酶（ALT）和谷草转氨酶（AST）活力、血糖（Glu）、甘油三酯（TG）、胆固醇（CHOL）、高密度脂蛋白（HDL）、低密度脂蛋白（LDL）含量。

分别采用南京建成生物工程研究所的 A007-2 过氧化氢酶（CAT）试剂盒（可见光法）、A001-1 总超氧化物歧化酶（T-SOD）试剂盒（羟胺法）、A050-1 溶菌酶（LZM）试剂盒（比浊法）、A067 总脂肪酶（脂蛋白脂肪酶（LPL）、肝脂肪酶（HL））试剂盒（比色法）和 A003-1 丙二醛（MDA）试剂盒（TBA 法）测定试验鱼肝脏样品中的 CAT、
SOD, LZM, LPL, HL 活力和 MDA 含量；采用免疫分析（ELISA）试剂盒测定脂肪酸合成酶（FAS）活力。

1.3 数据处理

试验数据以平均值±标准差（mean±S. D.）表示。采用 SPSS 19.0 软件对试验数据进行单因素方差分析（ANOVA），若差异显著，则进行 Duncan 多重比较，显著性水平设为 0.05。

2 结果与分析

2.1 不同虎杖添加量对血鹦鹉肝脏抗氧化指标的变化

试验中血鹦鹉肝脏 CAT、SOD 活力和 MDA 含量在不同虎杖添加量下均有一定变化。从表 2 可见：各时间段，基础组 CAT 活力与对照组无显著性差异（P > 0.05），而试验组（A – D）CAT 活力均显著高于对照组和基础组（P < 0.05）。A – D 组 CAT 活力随虎杖添加量的增加略有变化，但无显著性差异（P > 0.05）；对照组 SOD 活力显著低于基础组和 A – D 组（P < 0.05），A – D 组 SOD 活力随虎杖添加量的增加呈升高趋势，A – D 组 SOD 活力略高于基础组，仅 C 组 7 d 和 D 组 28 d 时的 SOD 活力显著高于基础组（P < 0.05）；对照组 MDA 含量均显著高于基础组（P < 0.05），A – D 组 MDA 含量随虎杖添加量的增加总体呈下降趋势，但无显著性差异（P > 0.05）。

2.2 不同虎杖添加量对血鹦鹉肝脏溶菌酶活力的变化

从表 2 可见：各时间段，对照组血鹦鹉肝脏 LZM 活力始终低于基础组和 A – D 组，且存在显著性差异（P < 0.05）；A – D 组 LZM 活力随虎杖添加量的增加略有升高，但无显著性差异（P > 0.05）。

<table>
<thead>
<tr>
<th>组别</th>
<th>过氧化氢酶 CAT/(U·mg⁻¹)</th>
<th>超氧化物歧化酶 SOD/(U·mg⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7 d</td>
<td>14 d</td>
</tr>
<tr>
<td>基础组</td>
<td>35.09±1.24a</td>
<td>37.79±1.06a</td>
</tr>
<tr>
<td>对照组</td>
<td>34.57±1.63a</td>
<td>35.94±1.83a</td>
</tr>
<tr>
<td>A</td>
<td>49.16±0.54b</td>
<td>51.68±1.11b</td>
</tr>
<tr>
<td>B</td>
<td>48.93±0.27b</td>
<td>53.99±0.61b</td>
</tr>
<tr>
<td>C</td>
<td>49.37±0.34b</td>
<td>50.36±0.31b</td>
</tr>
<tr>
<td>D</td>
<td>45.79±0.99b</td>
<td>52.18±0.03b</td>
</tr>
</tbody>
</table>

注：同列中标有不同小写字母者表示组间有显著性差异（P < 0.05），标有相同小写字母者表示组间无显著性差异（P > 0.05），下同
Note: The means with different letters within the same column are significant differences at the 0.05 probability level, and the means with the same letters within the same column are not significant differences, et sequentia

2.3 不同虎杖添加量时血鹦鹉血清转氨酶活力的变化

试验中血鹦鹉血清转氨酶活力在不同虎杖添加量下均有一定的变化，ALT、AST 活力均随虎杖添加量的增加总体呈下降趋势。从表 3 可见：各时间段，对照组 ALT 活力显著高于基础组（P < 0.05），A – D 组 ALT 活力普遍低于对照组，仅 D 组 14 d 和 B、C、D 组 28 d 时 ALT 活力与对照组有显著性差异（P < 0.05），A – D 组与基础组无显著性差异（P > 0.05）；对照组 AST 活力处于较高水平，仅基础组 21 d 时 AST 活力显著低于对照组（P < 0.05）。
基础组与对照组无显著性差异（P>0.05），A～D组中仅A组7、21、28 d以及B组7 d时AST活力与对照组无显著性差异（P>0.05），其余时间段对照组均显著低于对照组（P<0.05）。

表3 不同饲料添加剂对血清ALT、AST活力的影响

<table>
<thead>
<tr>
<th>组别</th>
<th>7 d</th>
<th>14 d</th>
<th>21 d</th>
<th>28 d</th>
<th>7 d</th>
<th>14 d</th>
<th>21 d</th>
<th>28 d</th>
</tr>
</thead>
<tbody>
<tr>
<td>基础组</td>
<td>15.50±0.71</td>
<td>16.50±0.71</td>
<td>15.00±0.54</td>
<td>16.00±1.41</td>
<td>242.00±4.24</td>
<td>240.00±5.66</td>
<td>239.00±2.83</td>
<td>240.50±4.95</td>
</tr>
<tr>
<td>对照组</td>
<td>20.00±1.41</td>
<td>20.50±0.54</td>
<td>19.50±1.41</td>
<td>20.00±0.71</td>
<td>251.00±9.90</td>
<td>252.50±4.95</td>
<td>253.50±7.78</td>
<td>249.50±4.95</td>
</tr>
<tr>
<td>A</td>
<td>19.00±0.30</td>
<td>20.00±0.62</td>
<td>18.50±0.71</td>
<td>17.50±0.71</td>
<td>238.00±4.24</td>
<td>237.50±4.95</td>
<td>240.00±2.83</td>
<td>240.50±2.12</td>
</tr>
<tr>
<td>B</td>
<td>19.50±0.54</td>
<td>19.00±1.41</td>
<td>18.00±1.41</td>
<td>15.50±1.41</td>
<td>238.00±5.66</td>
<td>237.00±2.83</td>
<td>238.50±3.54</td>
<td>237.00±2.83</td>
</tr>
<tr>
<td>C</td>
<td>18.50±0.71</td>
<td>17.50±0.71</td>
<td>18.00±0.44</td>
<td>16.00±0.54</td>
<td>236.50±7.78</td>
<td>235.00±5.66</td>
<td>238.00±4.24</td>
<td>236.50±0.71</td>
</tr>
<tr>
<td>D</td>
<td>17.50±0.71</td>
<td>16.00±1.41</td>
<td>16.50±0.71</td>
<td>15.50±0.71</td>
<td>231.50±3.54</td>
<td>235.50±2.12</td>
<td>238.50±3.54</td>
<td>235.50±4.95</td>
</tr>
</tbody>
</table>

2.4 不同饲料添加剂对血清ALT、AST活力的影响

试验中血清ALT、AST活力分别用Linbro微量细胞计数法测定。从表3可见，各时间段，各组血清ALT、AST活力均无显著性差异（P>0.05），各组血清GLU含量均无显著性差异（P>0.05）。

从表3可见，各时间段，对照组血清TG含量显著高于基础组（P<0.05），A～D组TG含量随着饲料添加剂的增加总体呈下降趋势，其中B组、D组14 d时以及C组21 d时的TG含量显著高于对照组（P<0.05），其余各试验组与对照组无显著性差异（P>0.05）；对照组血清CHOL含量处于较高水平，除对照组7 d时CHOL含量与基础组无显著性差异外，其余均显著高于基础组（P<0.05）。

表4 不同饲料添加剂对血清GLU含量的影响

<table>
<thead>
<tr>
<th>组别</th>
<th>7 d</th>
<th>14 d</th>
<th>21 d</th>
<th>28 d</th>
<th>7 d</th>
<th>14 d</th>
<th>21 d</th>
<th>28 d</th>
</tr>
</thead>
<tbody>
<tr>
<td>基础组</td>
<td>4.82±0.09</td>
<td>5.39±0.78</td>
<td>5.05±0.13</td>
<td>5.35±0.06</td>
<td>4.82±0.09</td>
<td>5.39±0.78</td>
<td>5.05±0.13</td>
<td>5.35±0.06</td>
</tr>
<tr>
<td>对照组</td>
<td>5.11±0.10</td>
<td>4.98±0.08</td>
<td>4.99±0.04</td>
<td>5.03±0.26</td>
<td>5.11±0.10</td>
<td>4.98±0.08</td>
<td>4.99±0.04</td>
<td>5.03±0.26</td>
</tr>
<tr>
<td>A</td>
<td>5.03±0.48</td>
<td>4.83±0.11</td>
<td>4.85±0.14</td>
<td>5.29±0.76</td>
<td>5.03±0.48</td>
<td>4.83±0.11</td>
<td>4.85±0.14</td>
<td>5.29±0.76</td>
</tr>
<tr>
<td>B</td>
<td>4.93±0.29</td>
<td>5.32±0.19</td>
<td>4.94±0.03</td>
<td>5.33±0.67</td>
<td>4.93±0.29</td>
<td>5.32±0.19</td>
<td>4.94±0.03</td>
<td>5.33±0.67</td>
</tr>
<tr>
<td>C</td>
<td>5.00±0.22</td>
<td>4.94±0.25</td>
<td>4.95±0.54</td>
<td>5.34±0.13</td>
<td>5.00±0.22</td>
<td>4.94±0.25</td>
<td>4.95±0.54</td>
<td>5.34±0.13</td>
</tr>
<tr>
<td>D</td>
<td>5.02±0.33</td>
<td>4.84±0.03</td>
<td>4.88±0.25</td>
<td>5.29±0.12</td>
<td>5.02±0.33</td>
<td>4.84±0.03</td>
<td>4.88±0.25</td>
<td>5.29±0.12</td>
</tr>
</tbody>
</table>

表5 不同饲料添加剂对血清TG、CHOL、HDL、LDL含量的影响

<table>
<thead>
<tr>
<th>组别</th>
<th>甘油三酯 TG</th>
<th>总胆固醇 CHOL</th>
<th>高密度脂蛋白 HDL</th>
<th>低密度脂蛋白 LDL</th>
</tr>
</thead>
<tbody>
<tr>
<td>基础组</td>
<td>4.43±0.63</td>
<td>5.03±0.25</td>
<td>3.92±0.13</td>
<td>0.89±0.05</td>
</tr>
<tr>
<td>对照组</td>
<td>5.89±0.42</td>
<td>5.79±0.24</td>
<td>5.41±0.47</td>
<td>3.41±0.72</td>
</tr>
<tr>
<td>A</td>
<td>5.34±0.21</td>
<td>5.45±0.22</td>
<td>4.31±0.07</td>
<td>0.89±0.05</td>
</tr>
<tr>
<td>B</td>
<td>5.30±0.25</td>
<td>5.52±0.25</td>
<td>4.21±0.38</td>
<td>0.89±0.05</td>
</tr>
<tr>
<td>C</td>
<td>5.19±0.06</td>
<td>5.51±0.06</td>
<td>4.70±0.16</td>
<td>0.89±0.05</td>
</tr>
<tr>
<td>D</td>
<td>4.87±0.01</td>
<td>4.45±0.57</td>
<td>4.65±0.31</td>
<td>0.89±0.05</td>
</tr>
<tr>
<td>基础组</td>
<td>3.98±0.38</td>
<td>3.61±0.23</td>
<td>3.57±0.12</td>
<td>3.03±0.15</td>
</tr>
<tr>
<td>对照组</td>
<td>3.61±0.36</td>
<td>3.36±0.35</td>
<td>3.61±0.23</td>
<td>3.03±0.15</td>
</tr>
<tr>
<td>A</td>
<td>3.57±0.01</td>
<td>3.32±0.35</td>
<td>3.61±0.12</td>
<td>3.03±0.15</td>
</tr>
<tr>
<td>B</td>
<td>3.10±0.47</td>
<td>3.49±0.02</td>
<td>3.05±0.77</td>
<td>3.03±0.15</td>
</tr>
<tr>
<td>C</td>
<td>3.25±0.23</td>
<td>3.74±0.39</td>
<td>3.20±0.47</td>
<td>3.03±0.15</td>
</tr>
</tbody>
</table>

第6期 范彩霞,等：饲料中添加抗氧剂对血脂酶部分特异性免疫与脂代谢指标的影响 663
显著性差异（P＞0.05）外，其余时间段对照组均显著高于基础组（P＜0.05），A－D组中仅D组14 d时CHOL含量显著低于对照组（P＜0.05），其余各试验组均低于对照组，但无显著性差异（P＞0.05）；A－D组血清HDL和LDL含量并未随虎杖添加量的增加而出现明显的变化规律，对照组7 d时HDL含量与基础组、C组存在显著性差异（P＜0.05），与A、B、D组无显著性差异（P＞0.05）；基础组14 d时LDL含量与C组存在显著性差异（P＜0.05），其余各组间均无显著性差异（P＞0.05）。

2.5 不同虎杖添加量对血清鹅肝脂含量的影响

2.5 不同虎杖添加量对血清鹅肝脂含量的影响

本试验条件下，随着虎杖添加量的逐渐增加，血清鹅肝脂含量逐渐下降趋势。从表6可得：各时间段，各组间LPL、HL活性均无显著性差异（P＞0.05）。

表6不同虎杖添加量对血清鹅肝脂LPL、HL活性的影响

<table>
<thead>
<tr>
<th>组别</th>
<th>鳜蛋白脂酶 LPL</th>
<th>肝脂酶 HL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7 d</td>
<td>14 d</td>
</tr>
<tr>
<td>基础组</td>
<td>0.45±0.19</td>
<td>0.42±0.17</td>
</tr>
<tr>
<td>对照组</td>
<td>0.61±0.20</td>
<td>0.59±0.15</td>
</tr>
<tr>
<td>A</td>
<td>0.56±0.18</td>
<td>0.57±0.23</td>
</tr>
<tr>
<td>B</td>
<td>0.54±0.16</td>
<td>0.52±0.17</td>
</tr>
<tr>
<td>C</td>
<td>0.49±0.17</td>
<td>0.51±0.29</td>
</tr>
<tr>
<td>D</td>
<td>0.47±0.40</td>
<td>0.46±0.11</td>
</tr>
</tbody>
</table>

3 讨论

3.1 虎杖对血清鹅肝脂氧化指标的影响

在所有需氧生物的细胞内都存在抗氧化酶系统，其中CATA和CAT是水产动物的重要抗氧化防御性功能因子，是机体活力氧自由基的清除剂[9-10]。MDA含量反映细胞内脂质过氧化的程度[11]，是衡量肝脏损伤的重要指标[12]。虎杖中含有多种活性成分，张等人[13]的研究发现，UVB辐射会对HaCaT细胞造成明显损伤，经UVB辐射后，将虎杖苷作用于HaCaT细胞，与单纯UVB辐射的对照组相比，各给药组的细胞活性均显著提高（P<0.05），MDA含量显著降低（P<0.05），SOD活力显著增加（P<0.05），表明虎杖苷能够清除体内自由基，增强细胞的抗氧化能力。

近年来，随着人们对环境保护意识的增强以及对水产品质量要求的不断提高，无毒副作用的饲料添加剂逐渐成为水产养殖研究中的热点之一。其中草药及其提取物作为饲料添加剂应用于水产动物养殖的实验研究也逐渐增多。丁芹等[14]的研究发现，配制饲料时添加质量分数为1.0%的中草药对建鲤进行投喂，能够使建鲤的体色细胞、中性粒细胞和巨噬细胞数量明显增加，同时提高其溶菌酶活力，从而起到提高建鲤非特异性免疫能力的作用。

高。本试验结果指出：对照组 CAT 与 SOD 活力普遍低于基础组，而对照组 MDA 含量则高于基础组，说明高脂饲料的投喂使血清冠肝脏的正常生理机能受到一定影响；而将月牙作为饲料添加剂显著提高了血清冠肝脏 CAT 与 SOD 活力，同时降低了 MDA 含量，表明月牙可以改善并增强肝脏的抗氧化能力，且随着月牙添加量的增加呈现增强的趋势。

3.2 月牙对血清冠肝脏溶酶菌的影响

LZM 是生物机体在免疫反应中分泌的具有溶解细菌作用的非特异性免疫因子，广泛存在于鱼类各种体液、血清和巨噬细胞中，可起到增强抗感染效力、抗感染、抗肿瘤和抗病毒等效果，在动物的免疫防御中发挥重要作用。鱼类的特异性免疫系统并不完善，因此，鱼体内 LZM 活力能够在一定程度上反映鱼体的免疫防御水平。肝脏中溶酶菌酶的活力高，表明其免疫能力也相应提高。在水产养殖领域，LMZ 活力常作为评价免疫促进剂作用效果的重要指标。杨维等（2019）研究发现，饲料中添加 50～75 mg/kg 的月牙有效成分大黄素等，可以显著提高克氏螯虾血清溶菌酶活力。本试验中，对照组肝脏 LZM 活力显着低于各试验组和基础组，且各试验组间随着月牙添加量的增加，LZM 活力呈上升趋势，表明月牙有助于肝脏 LZM 活力的提高。

3.3 月牙对血清冠血清转氨酶的影响

正常情况下，ALT 和 AST 广泛存在于包括心脏、肝脏和骨骼肌在内的许多脏器和组织中。ALT 和 AST 在肝细胞内分布不同，ALT 主要存在于肝细胞胞浆中，而 AST 主要分布在肝细胞胞浆和肝细胞线粒体中。肝细胞由于质脑过氧化等损伤时，在浓度差的驱动下会使肝细胞中的 ALT 和 AST 释放进入血液，使得血清 ALT 和 AST 升高，血清中 AST 和 ALT 含量的增减可以反映肝脏是否发生损伤与病变。孟兆南等（2019）通过在锦鲤基础饲料中加入复方中草药（刺五加、枸杞子、金银花和黄芪），并于开始饲喂后的第 14、28、42 天对其血清 ALT 及 AST 活性进行检测，结果发现，在第 28 天时，复方Ⅱ组血清 ALT 活性与复方Ⅲ组血清 AST 活性与对照组有极显著性差异（P<0.01）；在第 42 天时，各复方组血清 ALT 活性与对照组有极显著性差异（P<0.01）。张霖（2019）对非酒精性脂肪肝早期的大鼠进行研究后发现，月牙血清中，与空白对照组相比，高、中剂量组大鼠血清中 ALT 含量明显下降（P<0.01 或 P<0.05）。本试验中，对照组血清 ALT 和 AST 含量均高于基础组，表明高脂饲料的投喂对肝细胞造成了一定的损伤，而实验组随月牙添加量的增加，血清 ALT 和 AST 含量均出现下降趋势，当添加量达到 2.0% 时，ALT 和 AST 含量均出现了显著下降（P<0.05），意味着肝脏损伤的情况得到明显缓解。

3.4 月牙对血清冠血清生化指标的影响

通过对血清生化指标变化的检查，能迅速了解鱼类的营养、代谢和疾病状况。血糖绝大多数情况下都是葡萄糖，其分解产生的能量是体内各组织细胞活动所需能量的主要来源，所以机体内的血糖必须保持一定的水平才能维持体内各器官和组织的需要。TG、CHOL、HDL 和 LDL 在血清中的含量是反映机体脂类代谢能力的重要生化指标，其中 TG 和 CHOL 是脂类代谢过程中的重要原料与分解产物。王明等（2018）研究发现，饲料中脂肪水平能够对脂溶性脂肪氧化脂类代谢产生影响，随着饲料脂肪含量的增加，血清中 CHOL 和 TG 含量显著提高（P<0.05）。李波等（2018）对高脂肪饲料致高脂血症模型大鼠的研究发现，将造复方月牙提取物灌胃给大鼠，可以使其血脂出现明显降低，改善血清血脂水平，其中高、中剂量组的效果明显优于低剂量组。张霖（2019）的研究中还发现，月牙脂能减少血清中 TG、CHOL、HDL 含量，并使 HDL 含量增加，达到纠正血脂紊乱的效果。本试验中所检验的血清生化指标中，Glu、HDL 和 LDL 含量并未因饲料中添加月牙而出现显著变化；随着月牙添加量的增加，试验组血清中 TG、CHOL 含量出现下降趋势，低于对照组，并接近基础组水平。这表明，将月牙作为饲料添加剂在一定程度上有利于提高血清脂类代谢的能力，而在控制血糖方面无明显作用。

3.5 月牙对血清冠肝脏脂肪酶活力的影响

肝脏在鱼类脂肪代谢过程中起着重要的调节作用，脂肪酸沉积和动员是脂肪酸代谢的两个基本过程。饲料中的脂肪酸被吸收并转运至脂质贮存所，整个贮存过程中，脂肪酸一般是以甘油三酯结合蛋白质形成乳糜微粒的形式，在多种脂肪酶如 FAS、HPL、LPL 等的作用下完成。LPL 与 HPL 是脂质分解代谢过程中两个关键酶，而 FAS 是脂肪合成过程中的关键酶。因此，LPL、HPL 和 FAS 在鱼体脂质代谢过程中承担着重要作用。当这
3 种酶活力降低时，肝脏脂肪的积累量就会减少。本试验中，对肝脏 LPL、HL 和 FAS 3 种重要脂代谢酶活力的测定结果显示，随着螺杆添加量的增加，3 种酶活力均呈降低趋势，其中 FAS 在螺杆添加量为 2.0% 时显著降低。这表明，螺杆能够对肝脏脂肪的累积产生一定的抑制作用，进一步体现了其作为饲料添加剂能够促进血脑组织内脂类的正常代谢、保护肝脏健康的功效。

4 结论

通过以上分析可以看出，将质量分数为 2.0% 的螺杆作为血脑高脂饲料添加剂，在本试验条件下，连续投喂 7 d 后可以显著增强鱼体肝脏的抗氧化能力和溶解酶活力，使非线性免疫能力得到改善，同时缓解并减轻其脑内细胞的损伤，降低肝脏的脂质过氧化程度，提高脂代谢的能力，且在第 14 天时效果稳定。但在更长时间内使用含有螺杆的饲料进行投喂，并不能使血脑组织的非线性免疫与脂类代谢能力进一步提高，因此，连续 14 d 投喂效果最佳。

参考文献：

[29] 张金, 螺杆对非酒精性脂肪肝保护作用及机制研究 [D].
Abstract: Blood parrot (Cichlasoma citrinellum ×C. synspilum) with body weight of (48.0±3.5) g were fed to apparent satiation diets containing main protein sources of fish meal and soybean meal, fish oil at rate of 8% and 14% of the basal diet and the high-fat diet supplemented with knotweed Polygonum cuspidatum at a rate of 0, 0.5%, 1.0%, 1.5%, and 2.0% for 28 d with triplication to evaluate the feasible use of knotweed in aquaculture. The indices of partial non-specific immunity and lipid metabolism were determined in the blood parrot fed the diets 7, 14, 21, and 28 after administration. The results showed that the activities of liver superoxide dismutase (SOD), lysozyme (LZM) and catalase (CAT) were found to be increased significantly with the increase in dietary knotweed level (P<0.05), and that malondialdehyde (MDA) content was decreased with the increase in dietary knotweed and activities of serum alanine aminotransferase (ALT) and aspartate transaminase (AST) was decreased with the increase in dietary knotweed, with significantly different between the maximal dietary knotweed group (2.0%) and the control group (P<0.05) at the end of the experiment. There were decrease in contents of serum triglyceride (TG) and total cholesterol (CHOL) with the increase in dietary knotweed, without significant difference compared with those in the control group (P>0.05), without significant difference in contents of serum glucose (Gl), high-density lipoprotein (HDL), and low-density lipoprotein (LDL) (P>0.05). The liver lipoprotein lipase (LPL), and hepatic lipase (HL) activities were shown to be declined, no significant difference (P>0.05). Fatty acid synthase (FAS) activity, however, was decreased significantly with the increase in dietary knotweed level (P<0.05). In summary, dietary knotweed can improve liver antioxidant capacity and lysozyme activity, and reduce liver injury and enhance the ability of lipid metabolism in blood parrot and it is recommended that 14 d successive feeding the diet containing 2.0% of knotweed.

Key words: blood parrot; knotweed; antioxidant property; lipid metabolism

Effects of dietary knotweed levels on partial non-specific immunity and lipid metabolism in blood parrot

FAN Yun-shuo1, CUI Pei1,2, JI Yan-bin1, YOU Hong-zheng3, WANG Xu1, QIAN Gang1, ZHANG Chun-xiao1, CHEN Xiao1, ZHANG Zi-chao1

1. College of Fisheries science, Tianjin Key Laboratory of Aqua–ecology and Aquaculture, Tianjin Agricultural University, Tianjin 300384, China; 2. Tianjin Ornamental Fish Technology Engineering, Tianjin 300042, China; 3. Tianjin Fisheries Research Institute, Tianjin 300042, China

